Nakayama automorphisms of Frobenius algebras
نویسنده
چکیده
We show that the Nakayama automorphism of a Frobenius algebra R over a field k is independent of the field (Theorem 4). Consequently, the k-dual functor on left R-modules and the bimodule isomorphism type of the k-dual of R, and hence the question of whether R is a symmetric k-algebra, are independent of k. We give a purely ring-theoretic condition that is necessary and sufficient for a finite-dimensional algebra over an infinite field to be a symmetric algebra (Theorem 7). 2003 Elsevier Inc. All rights reserved.
منابع مشابه
The graphical calculus for ribbon categories: Algebras, modules, Nakayama automorphisms
Abstract The graphical description of morphisms in rigid monoidal categories, in particular in ribbon categories, is summarized. It is illustrated with various examples of algebraic structures in such categories, like algebras, (weak) bi-algebras, Frobenius algebras, and modules and bimodules. Nakayama automorphisms of Frobenius algebras are introduced; they are inner iff the algebra is symmetric.
متن کاملDecomposition of Some Pointed Hopf Algebras given by the Canonical Nakayama Automorphism
Every finite dimensional Hopf algebra is a Frobenius algebra, with Frobenius homomorphism given by an integral. The Nakayama automorphism determined by it yields a decomposition with degrees in a cyclic group. For a family of pointed Hopf algebras, we determine necessary and sufficient conditions for this decomposition to be strongly graded.
متن کاملUnipotent and Nakayama automorphisms of quantum nilpotent algebras
Automorphisms of algebras R from a very large axiomatic class of quantum nilpotent algebras are studied using techniques from noncommutative unique factorization domains and quantum cluster algebras. First, the Nakayama automorphism of R (associated to its structure as a twisted Calabi-Yau algebra) is determined and shown to be given by conjugation by a normal element, namely, the product of th...
متن کاملSymmetric Algebras over Rings and Fields
Connections between annihilators and ideals in Frobenius and symmetric algebras are used to provide a new proof of a result of Nakayama on quotient algebras, and an application is given to central symmetric algebras. 2010 Mathematics subject classification: primary 16D99; secondary 15A63.
متن کاملSkew Calabi-yau Algebras and Homological Identities
A skew Calabi-Yau algebra is a generalization of a Calabi-Yau algebra which allows for a non-trivial Nakayama automorphism. We prove three homological identities about the Nakayama automorphism and give several applications. The identities we prove show (i) how the Nakayama automorphism of a smash product algebra A#H is related to the Nakayama automorphisms of a graded skew Calabi-Yau algebra A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003